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Abstract 

Molecular-geometry calculations in the superspace 
framework of incommensurate structure analysis are 
presented in detail. In particular, a method is described 
for attaching atoms to groups of others without the 
necessity of introducing further modulation functions. 
Modified structure-factor expressions are derived to 
simplify the application of constraints to modulation 
functions by introducing internal coordinate reference 
points in a more general way. The consequences 
of such changes are discussed. The results can 
be useful to improve the existing algorithms for 
incommensurate structure refinement and the analysis 
and presentation of results, especially for recently 
discovered incommensurate structures of large organic 
molecules. Some ambiguities still existing in the 
superspace approach related to molecular geometry 
are clarified. The results may also be useful for the 
compilation of a database describing incommensurate 
structures. 

1. Introduction 

Incommensurate (IC) structures are currently being stud- 
ied in the framework of superspace-group symmetry and 
no working alternative seems as yet to exist. Most of 
them have been studied by means of so-called atomic 
models. 

Although the structure refinement is sometimes rather 
difficult (Watkin, 1994), applications of techniques spe- 
cific to large structures are sparse. The analysis and 
presentation of the results is rather limited, but some 
standard requirements have been formulated recently 
(Chapuis et al., 1996). 

As the size of the IC structure and the complexity of 
modulation (high anharmonicity) increases, more elabor- 
ate methods of controlling the structure refinement and 
the analysis of the results have to be developed. The 
latter should not only include typical plots of modulation 
functions (MF) but also much more elaborate techniques 
like graphical animation of the entire IC structure, visu- 
alization of snapshots of the structure for a given value 
of the internal coordinate and quick inspection of the 
modulation of any geometrical parameter to enumerate 
the most important features. 
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Another problem in the superspace framework con- 
cerns the extension of the existing methods of attaching 
light atoms (usually H atoms) to groups, which are 
explicitly refined. In IC structures of even moderate size, 
such a procedure can prevent an excessive increase in 
the number of refined parameters. This is justified as 
any omission of a number of atoms will significantly 
distort the final result. The MF parameters are usually 
very sensitive to any deficiency in the basic structure 
model. 

In this paper, an attempt to solve some of these prob- 
lems is reported. An extension of the basic molecular- 
geometry (MG) calculations to the superspace frame- 
work will be presented. The superspace symmetry is 
fully exploited. The procedures to attach light atoms 
in any desired coordination as well as other standard 
molecular-geometry calculations will be extended to 
IC structures. The important concept of the internal 
coordinate (or phase) reference point (RP) is presented. 
The modified structure-factor expressions to handle the 
RP are also given. 

Our results have been implemented and used in the 
study of the complex IC structure of hexamethylene- 
tetramine suberate (Bussien Gaillard, Paciorek, Schenk 
& Chapuis, 1996), exhibiting both a high anharmonicity 
of the modulation and a large number of H atoms. 

2. Basic molecular-geometry calculations 

In our approach to the MG of  IC structures, the algor- 
ithms have been derived in two steps. In the first step, the 
modulation has been neglected and all calculations have 
been tested on unmodulated crystals. The modulation 
has been added in the second step. In this section, all 
the procedures will be briefly described. 

2.1. Transformation to the Cartesian coordinates 

In most of our computations, the first part is a 
sequence of transformations of the fractional coordinates 
of n selected atoms to Cartesian coordinates. To achieve 
a greater flexibility, a symmetry operation (usually iden- 
tity) is associated with each atom. In this paper, this 
is the three-dimensional part of the superspace-group 
operation: 

Xy ~ {alv}y, j = 1, . . . , n .  (1) 
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The coordinates are first transformed according to the 
associated symmetry operations: 

x ff = R j x j  + v j, (2) 

and the resulting vectors of the fractional coordinates are 
arranged in the following 3 x n matrix: 

= [ x {  . . . .  ( 3 )  

Subsequently, they are all transformed to the Cartesian 
coordinates 

X c = C X  f (4) 

and stored in the final 3 × n matrix. A standard definition 
of the last transformation matrix has been adopted (see 
Dunitz, 1979). 

2.2. Computation of the geometrical parameters 
A useful convention is to consider any MG parameter 

as a scalar function of the matrix argument computed in 
the previous step: 

f = geom(XC). (5) 

The partial derivatives are (optionally) calculated and 
arranged in the following matrix (Fr6chet derivative): 

[DC]ij = Of/Ox~. (6) 

They are then transformed back to derivatives with 
respect to fractional coordinates: 

D y = (~- 1 D c, (7) 

and subsequently all columns of the resulting matrix 

D f = [ d ~ , . . . , d  f] (8) 

are transformed by the corresponding rotation matrices 

dj  = l~jdfj (9) 

to the desired partial derivatives of the geometrical 
quantity with respect to the coordinates of the initial 
atoms: 

[D]i j =Of/Oxi j .  (10) 

In all the above expressions, the tilde stands for matrix 
transposition. All standard quantities like interatomic 
distance, bond angle, dihedral angle, sin and cos func- 
tions of both kinds of angles have been implemented in 
our program. 

2.3. Computation of the attached atom coordinates 
As is well known, any molecule can be specified 

geometrically by the internal coordinates (interatomic 
distances, and bond and dihedral angles). Atoms can 
be attached sequentially to the previously specified part. 
Only two operations involving three atoms are required: 
elongation of the three-atom sequence or branching on 
the second atom. Such algorithms are common in all 
molecular-modeling programs. 

Both operations require the Cartesian coordinates of 
three atoms and three parameters specifying the local 
geometry, as will be shown later. A general procedure 
has been implemented as a vector function of a 3 × 3 
matrix and three scalar arguments: 

yC = put(X c, d, ¢, ¢) ,  (11) 

where the matrix argument is the same as in §2.1. The 
scalar arguments are the bond length and two angles 
defined in §§3.3 and 3.4. 

The result is the vector of Cartesian coordinates of the 
attached atom. A transformation to fractional coordinates 
is performed next: 

y = C - l y  c. (12) 

In our implementation, the derivatives of the coordinates 
of the attached atom with respect to the coordinates of 
the defining atoms are not computed. Its contribution to 
the normal matrix is thus neglected. This can be a source 
of subtle numerical difficulties and we hope to remove 
this approximation in the future. 

2.4. Symmetry transformation of the attached atom 
In the structure refinement, attached atoms are consid- 

ered as symmetrically independent. For other purposes, 
it might also be useful to obtain easily their coor- 
dinates transformed by any symmetry operation. Two 
approaches are possible. 

The first is, of course, to apply the symmetry trans- 
formation to the resulting coordinates: 

y '  = R y  + t. (13) 

This is satisfactory for unmodulated structures. In the 
presence of a modulation, this procedure leads to severe 
difficulties since the MFs of the attached atom are 
implicit. Thus, another approach is preferred. 

The procedure described in the previous section can 
be modified to obtain directly the desired coordinates. 
The modification is to premultiply all the symmetry 
operations attached to the defining atoms and one of 
the angular parameters as follows: 

{RIt}J +--- {RI t}{RI t}J '  (14) 

¢ ~-- det (a )¢ .  

The computations are now performed without further 
modifications and the result yields the coordinates of 
the transformed attached atom. 
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3. Details of molecular-geometry calculations 

More details on MG calculations will be given in the fol- 
lowing sections. These calculations are greatly simplified 
in Cartesian coordinates. Vector algebra identities have 
been extensively used to simplify the computation of the 
derivatives, especially for the dihedral angle. Standard 
definitions of some quantities given by Dunitz (1979) 
have been used. The coordinates of the attached atom 
are computed by using modified algorithms given by 
Schlick (1987). Before extending our calculations to IC 
structures, some tests were performed by comparison 
with procedures given by Schlick (1989). 

3.2. More on dihedral angle 

Let us introduce an index-free notation for interatomic 
vectors: 

a : r21 , 

b = r32 , (21) 

C = r43 

and define two further quantities: 

n = b/IbI, 
~]-t _ la × bllb × cl" (22) 

3.1. Bond lengths and angles 

Given any two vectors, their lengths and angle are 
easily calculated from the well known expressions 

u = ]u], 

v = Ivl, 
(15) 

cos¢  = (u .  v ) / (uv) ,  

sin ¢ = lu × v l / ( uv  ). 

In the last equation, the norm of the cross product is 
eliminated using 

lu × vl 2 - (~,v) 2 - ( u .  v )  ~. (16) 

The above expressions involve dot and cross prod- 
ucts only. Partial derivatives of the vector functions 
are understood component-wise in the following useful 
relations: 

Ox(u ' , r )  = O~U. V + U. O~V, 
(17) 

O~(u x v) = O~u x v + u  × O~v. 

Both kinds of angle can be computed from the equations 
above. 

Let us define the interatomic vector 

The standard definition of the dihedral angle may then 
be written as 

c o s ¢  = ~7(a × b ) - ( b  × c), 
(23) 

n s i n ¢ = ~ 7 ( a x b )  x ( b x c ) .  

The last quantity can be written in a more concise form: 

sin ¢ = ~7 b a .  (b x c) = r/b det[a, b, c], (24) 

which is very convenient for further calculations. Addi- 
tional simplifications are achieved by using the identities 

(a x b ) .  (b x c) -- (a .  b ) ( b .  c) - (a .  c ) (b .  b), 

(a x b)  x (b x c) -- [a .  (b x c)]b = det[a, b, c]b. 
(25) 

Furthermore, the identity 

0 x det[a, b, c] = det[0 xa, b, c] + det[a, 0 xb, c] 

+ det[a, b, 0xc] (26) 

greatly simplifies the calculation of the derivatives. Most 
of them have been reduced to simple dot products and 
determinants. 

r m = x k - x t. (18) 

To obtain a bond angle, two interatomic vectors are 
required: 

U = r 1 2 ,  
(19) 

V = r 3 2 ;  

and for a dihedral angle, two cross products: 

u = r21 x r32 , (20) 

V --- r32 × r43. 

In both cases, the general expressions above enable 
us to compute the desired quantity. As in the case of 
the dihedral angle new cross products were introduced, 
further simplifications could be performed to facilitate 
the derivative calculation. 

3.3. Position of  a terminal atom 

Given three atoms, the coordinates of a fourth are 
calculated such that the bond length to atom 3 is d, 
the bond angle in the 2 -3 -4  sequence is 0234 and the 
dihedral angle of the 1 -2 -3 -4  sequence is "Q234- The 
following calculations are performed: 

U - -  X 2 - -  X l ,  
(27) 

V - -  X 3 - -  X 2 ,  

e l  = v / I v l ,  

~ = u . e l ,  

e 2 = - ( u  - ~e~) / [u  -/~e~l,  

e 3 - -  e I X e 2 ,  

(28) 
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d - Ix4 - x31, 

a = d cos 0234, (29) 

/3 = d sin 0234 cos T1234, 

7 = d sin 0234 sin T1234, 

X 4 -- X 3 -- s e  t + / 3 e  2 -a t- "Te 3. (30) 

If  an additional transformation is required, the dihedral 
angle will be modified: 

~-1234 ~-- det(R)~-1234" (31) 

This algorithm can be understood easily from the defini- 
tion of the dihedral angle. The calculations are done in 
the local Cartesian coordinate system with the first axis 
along the 2-3 bond, as shown in Fig. 1. 

3.4. Tetrahedral and trigonal arrangements 

Given three atoms, the coordinates of a fourth are 
calculated in such a way that the bond length to atom 
2 is d and the two angles ¢ and ¢ presented in Fig. 2 
admit the given values. The following calculations are 
performed: 

U ~ X 1 - -  X 2 ,  
(32) 

V ~ X 3 - -  X 2 ,  

e2 = - ( u  + v ) / l u  + vl ,  

e 3 = - ( u  x v ) / l u  x v I, (33) 

e I -- e 2 × e 3, 

d _ Ix4 - x21, 

a = d cos ¢ sin ¢, 
(34) 

/3 = d cos ¢ cos ¢, 

7 = d sin ¢ ,  

x 4 = x 2 + a e  1 + / 3 e  2 +eye 3. (35) 

If  an additional symmetry transfomation is required, the 

I 
e3 

Fig. 1. Local geo~metry of the terminal atomic arrangement. 

angle ¢ is modified: 

¢ +-- de t (R)¢ .  (36) 

This very flexible procedure includes, as a special case, 
two common arrangements. The tetrahedral arrangement 
is obtained if 

q~ : 0, ¢ -- + ~ T e t / 2 ,  

{~Tet : a rccos( - -  1/3), 

x 4 = x 2 + d COs(@Tet/2)e2 -4- d sin(~gTet/2)e3. (37) 

The sign change indicates that two atoms can be placed 
simultaneously. For the trigonal arrangement, the calcu- 
lations reduce to 

¢ = f = 0 ,  

x 4 = x 2 + de 2. (38) 

The simplified forms are used most frequently, but it is 
the general form that has been implemented in order to 
let the user specify both angles. 

4. Molecular geometry in superspace 

When an IC structure has been solved and refined, a final 
validation of the model and presentation of the results is 
usually expected. For unmodulated structures, large data 
bases and numerous software tools are available. For IC 
structures, the situation is less favorable. 

Some of the problems related to the interpretation of 
existing data of modulated structures will be exposed. 
To clarify the presentation, some basic concepts of the 
superspace approach have to be reviewed. 

4.1. Incommensurate structure model 

Some standard requirements for the unambiguous 
presentation of the results of IC structure analysis have 
been formulated recently. Apart from analogous require- 
ments for conventional structures, a number of additional 

~ 2 

Fig. 2. Local geometry of the tetrahedral and trigonal atomic arrange- 
ments. 
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parameters and indications should be included. Only 
some of them will be studied in detail in order to check 
what kind of data are necessary to validate the geometry 
of the final model and present the relevant results in 
detail. We shall restrict ourselves to (3+l)-dimensional 
IC structures, since the vast majority belongs to this 
category. 

The departure from classical crystallography consists 
in the presence of the so-called MF given for every 
coordinate of each atom: 

-u + u~(x),  i = 1,2,3, (39) 4 ( x )  = xi 

where :~ is the average coordinate of the symmetry- 
independent atom/z. These functions are real and peri- 
odic in one scalar variable: 

u~(x + 1) = u~(x),  (40) 

and include a number of adjustable parameters. Usually, 
the analytic form of such a function is common to all 
atoms and all parameters. The strict meaning of the 
displacive modulation introduced above is then 

u i•(x) - u(p~, 1, • • • , P"i,N ;x) .  (41) 

Its Fourier expansion reads 

M 

u(x)  = E un exp(2"rrinx) + c.c. (42) 

(c.c. indicates the complex conjugate term) and the set 
of adjustable parameters can be just the set of exl3ansion 
coefficients. 

In practice, the trigonometric series expansion 

M 

?I,(X) - -  2 [CnC°S(27rnx) + %sin(27rnx)] (43) 
n = l  

average value). The interpretation of these contraints 
will also be discussed. 

The radical departure from classical crystallography 
lies in the use of a higher-dimensional space group 
to describe the symmetry properties. The superspace- 
group operator includes a part acting on the so-called 
internal coordinate, which may be identified with the 
independent variable of the MF. As expected, such 
a transformation is consistent (under some additional 
assumptions given later) with the standard mathemati- 
cal definition of the function mapping induced by an 
independent variable transformation: 

9(x)  = f [ R ~ 4 1 ( x -  "r4)]. (46) 

The above notation suggests correctly that the complete 
symmetry operation can be considered as an element 
of a (3+l)-reducible four-dimensional space group with 
some additional properties. All these groups have been 
derived (de Wolff, Janssen & Janner, 1981). 

4.2. Lattices in superspace 

The metric properties of the supercrystal, an artificial 
periodic structure in higher-dimensional space, should 
be well defined in order to interpret correctly MG quan- 
tities, defined in three-dimensional space only. In order 
to define all quantities to be used later, the construction 
of the supercrystal will be briefly presented. 

The departure point is an unusual diffraction pattern, 
a combination of well known Bragg reflections and 
additional reflections called 'satellites'. It is assumed 
that both sets can be separated and all reflections can 
be indexed by more than three integers. 

From the set of 'main' reflections, the reciprocal basis 
can be constructed and the additional reflections are 
indexed by introducing the modulation vector. We will 
restrict ourselves to the case when one vector suffices 
and each reflection can be labeled by four indices only: 

or the equivalent amplitude/phase form H = K + h4q, (47) 

M 

u(x)  = ~ cncos(27rnx + 27ten) (44) 
n = l  

are preferred but other functions are occasionally used as 
well (see PetHrek, Gao, Lee & Coppens, 1990; PetHrek, 
van der Lee & Evain, 1995) 

Finally, constraint equations (usually linear ones) may 
be applied to some parameters, for example, 

where the first vector points to a main reflection: 

3 

K = ~ hia* (48) 
i = 1  

and 
3 

q - -  ~ qia* (49) 
i = 1  

p~,k = Ap~,z + B,  (45) 

where p is the generic name of any structural param- 
eter (e.g. coordinate), i enumerates its components, if 
appropriate, and k enumerates the modulation-function 
parameters (index equal to zero usually refers to the 

is the modulation vector. The important feature is the 
incommensurability: at least one component of the mod- 
ulation vector should be incommensurate with the re- 
ciprocal lattice defined by the main reflections. Thus, 
the translational symmetry in three-dimensional space 
cannot be recovered by any basis transformation. 
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Using modem mathematical terminology, such a 
diffraction pattern has the structure of the following 
Z-module: 

H E M * ,  

dim(M*) = 3, (50) 

rank(M*) = 4. 

To make the rank equal to the dimension, i.e. convert the 
Z-module to the reciprocal lattice, an embedding is used. 
The vectors are augmented by additional components 
and uniquely mapped into lattice points: 

H ~ (H, HI) C S* (51) 

in the four-dimensional superspace with the direct sum 
structure 

(r, t) E Vs  = V ® VI,  (52) 

where the first component relates to physical space and 
the second is called the internal one. The vectors in the 
physical space and on any hyperplane parallel to it will 
be denoted in bold. 

Of great importance is the definition of the split basis, 
first defined in reciprocal superspace: 

a s i = ( a * , O ) ,  i =  1,2,3, 
as4 = (q, 1). (53) 

The direct lattice can be easily calculated as 

as i  = (ai ,  - q i ) ,  i = 1 , 2 , 3 ,  

as4 = (q, 1) (54) 

by using the standard relation, extended to four dimen- 
sions: 

as i  • a s j  = 5ij, i, j = 1 . . . . .  4. (55) 

The diffraction pattern admits now a standard interpre- 
tation: 

4 
H s  - (H, Hz) = (K + h4q, h4) = E hia}i (56) 

i=1 

as a set of points of some lattice. Note that in the split 
reciprocal basis the first three integer coordinates consist 
of main reflection indices only. 

In direct space, any vector can be written as 

4 

r s  - (r, r , )  = (r, t) = E z~as~, (57) 
i=1 

where 
3 

r : ~ x i a i ,  
i=1 

x 4 = q . r + t .  

(58) 

It is important to note that the first three fractional coor- 
dinates are the same in both three- and four-dimensional 
direct bases but the fourth is not. It is also easy to 

verify that if t = 0 the point r s  will be placed in the 
original physical space, now a specific three-dimensional 
hyperplane. Of great importance is the last relation 
between t and x4, the additional coordinates in two 
bases. 

The scalar product between the two vectors I t s  and 
r s  above can be written in a variety of equivalent forms: 

/-/s • r s  - ( H ,  ~ / z ) .  ( r ,  r~) 

= H . r + H i t  

= K • r + h4x4 
4 

= ~ h i x i .  
i=1 

(59) 

This series of equivalences is the first source of ambigu- 
ities that we would like to clarify as the structure-factor 
expression, for example, depends mainly on this scalar 
product. 

The above construction is called a standard embed- 
ding (see Fig. 3) and lies at the heart of the superspace 
approach to IC structures. Many results can be directly 
obtained from classical crystallographic techniques of 
structural analysis extended to higher dimensions. How- 
ever, at first we have to gain a better insight into the 
contents of the direct supercell just constructed, as our 
former three-dimensional structure has been mapped into 
a higher-dimensional object. 

4.3. Concept  o f  supercrystal  

From Fourier analysis (Bricogne, 1993), especially 
from the slice-projection theorem, it follows that the 
electron density in physical space is the inverse Fourier 
transform of the projection onto that hyperplane. 

• t  

v w ql 
s t 

/ 

s 

- 5  
* t 

a s l  / 

/ 
t 

t 
/ 

/ 

i 
, v w  

a 1 / 

t /  
• t 

t 

(a) 

I 

t 

e4= asa 

X 4 

(b) 

Fig. 3. (a) Reciprocal and (b) direct bases of the standard embedding. 
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As this section is central, but not principal, this 
density is in general non-periodic, even if by construc- 
tion the supercrystal is periodic. Incommensurability 
excludes the possibility of making such a section cen- 
tral and principal by base transformation with integer 
coefficients. 

In the absence of satellites, the same result is obtained 
for any section parallel to the physical hyperplane. Thus, 
a so-called basic structure is simply a continuously 
repeated image of the three-dimensional crystal along 
the internal coordinate. In particular, the atomic positions 
are represented by a set of straight lines parallel to the 
fourth basis vector in the superspace. For each atom, 
this line is defined as 

r"  = 2 f a  + ~¢b + :~c,  

2 ~ = q . r U + t ,  t C R ,  
(60) 

which specifies the fractional coordinates of every point 
in the superspace basis. The commonly used notation 
introduced above suggests that the first three coordinates 
can result from an averaging over one period of the 
internal coordinate. The fourth coordinate is obviously 
continuous and the labeling is redundant. In some cases, 
it is even useful to reserve the fourth labeled coordinate 
symbol for special purposes, especially for 

2~ = q .  r ~, (61) 

an important quantity in the standard embedding called a 
'compensating shift': a change in the internal coordinate 
caused by a translation in the physical space (here from 
the origin to the atom position). 

The variable t has sometimes a different interpretation 
as the following (non-unique) mapping of all cells of the 
basic structure: 

Z 3 9 n H t = ( q . n m o d Z )  E[O,1). (62) 

For an IC modulation vector and an infinite crystal, 
a dense but countable set of points is obtained and 
the continuous approximation to any function of t can 
be properly constructed. Such a mapping of atomic 

displacements in physical space into the supercell is 
shown in Fig. 4. 

4.4. Interatomic vector as a modulation function 

The presence of satellites indicates a breaking of the 
translational symmetry in any section parallel to the 
physical space. The supercrystal remains periodic in 
superspace. Conservation of translational symmetry is 
the main advantage of this approach. In particular, it 
is sufficient to investigate only one period of the basic 
structure distortion, e.g., for a displacive modulation, 
only the functions that are added to the basic coordinates: 

~ ( x )  = ~ + ~(x) .  (63) 

Since all displacements take place in physical space, the 
following condition should always be fulfilled: 

u~(x) = q .  uU(x). (64) 

The remaining problem is how to compute x, especially 
if more functions, belonging to different atoms, are 
required simultaneously, e.g. at the common t section. 
This is the case for all MG calculations. 

In the first example, let us consider an interatomic 
vector defined as 

Axi ( t )  = ~ ( t ~  + t) - x~(t~ + t), i = 1,2,3. (65) 

This vector should obviously be parallel to physical 
space. Furthermore, we have to guarantee that, for t = 0, 
i.e. in the physical hyperplane, the MF arguments take 
on correct values by definition equal to RP. This will 
add proper coordinate shifts to the basic values, a kind of 
'synchronization' problem. In this case, we can use such 
a vector to compute correctly, for example, a distance 
equivalent to the three-dimensional quantity. Otherwise, 
the result has no physical meaning. 

In general, we face the problem of computing the 
coordinates for all atoms of interest simultaneously from 
the expression 

2 3 

===== t =2222 =722=5~-'-  

as4 

Fig. 4. Mapping of atomic displacements from physical space into 
the supercell. 

~ ( t #  + t) = ~ + u,~(t# + t), (66) 

which is the only one supplying the correct coordinates 
to all previously discussed procedures. The proper con- 
struction of the required interatomic vector in superspace 
is shown in Fig. 5. The problem is thus to infer the 
initial values of the internal coordinates for all atoms and 
to know where such information is 'hidden' when not 
given explicitly. This is the worst manifestation of the 
long-standing 'shifted-unshifted' dilemma, well known 
among practitioners. 

In this contribution, an attempt is made to resolve 
this problem. In particular, a method will be given 
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to extract the relevant data from the structure-factor 
formula or take advantage of this extra flexibility during 
the structure refinement. This problem has been recently 
recognized by other authors as well (van Smaalen, 1995) 
and at least three different choices of RP were proposed 
and applied in practice: 

t~ = q .  r ~, (67a) 

t~ = 0 ,  (67b) 

t~ = q .  g~'. (67c) 

The first one is de Wolff's (1974) original choice and is 
the most frequently used. The second one was occasion- 
aly used in theoretical considerations, and at least twice 
used in structural studies (Kobayashi, 1974; Bussien 
Gaillard, Paciorek, Schenk & Chapuis, 1996). 

The last is the most general case and was an inevitable 
choice to deal with a rigid-body approximation (PetH6ek, 
Coppens & Becker, 1985), an instance of the problem 
when one MF has to be assigned to several atoms 
simultaneously. The new vectors can be the centroids 
of the molecules, for example. The relation between 
the atomic coordinates and MF arguments is partially 
relaxed. Note also that the first two choices are special 
cases of the last one and, sometimes, the additional three- 
dimensional vectors are synonymously called the RP. 

A simple consequence of this flexibility in our MG 
calculations is the structure of the final Jacobian trans- 
formation of the calculated derivatives. In all cases, 
the derivatives with respect to the modulation-function 
parameters will require a simple Jacobian matrix of the 

as4 

(a) 

' aS4 

(b) 
Fig. 5. Physically (a) proper and (b) improper interatomic vectors in 

superspace. The wrong RP in the MF leads to non-zero components 
along the internal coordinate. 

f o r m  
Ozt~ /Op~,,~ = Ou~ /Op~,n (68) 

for every atom and every coordinate when the atomic 
model is adopted. To compute the derivatives with 
respect to the basic coordinates, different expressions 
are required for each choice: 

Ox~ /02  t] = 6ij + qj du~ /dx,  (69a) 

Ox~ / O ~  = 5~j, (69b) 
3 

Oxt~/O27 = Swv Sij + y']~ du'( /dx  ~ qk Og~. /OYc73 . 
u k = l  

(69c) 

The first and last choices lead to the 'mixing' of 
derivatives within one atom or any number of them, 
respectively. This distinction has to be taken into account 
when computing restraints and e.s.d.s for coordinates. 

4.5. Constraints on modulation functions 
The choice of the to value has a great influence on the 

physical meaning of the constraints on MF parameters. 
The simplest example is when it is desirable to have 
the same modulation refined on two independent atoms. 
This necessity is obviously motivated by some physical 
considerations and should first of all be fulfilled in 
physical space and on all hyperplanes parallel to it: 

p~ (t~ + t) = p~'(t~ + t), t E R. (70) 

The natural solution is to introduce the following sim- 
plest set of constraint equations: 

pn ~ = p ~ ,  n = l  . . . .  , N ,  (71) 

equating all MF parameters on the target atom to the 
corresponding values of the refined one. A good example 
is the occupational type of modulation. Unfortunately, 
the effect of this constraint depends on the to values, 
as shown in Fig. 6. In the three cases depicted, the 
MF parameters of atoms 1 and 3 are constrained to 
the MF parameters of the reference atom 2 by applying 
equality constrains (71). In Fig. l(a), the RP are chosen 
according to (67a). Note that the atomic displacements 
are different on any section parallel to the physical 
hyperplane but equal on any principal section of the 
supercell (one of them is shown). We are not aware of 
any useful application of such constraints. Usually, it 
is desired to maintain the equality of the displacements 
or other modulations on every physical hyperplane. It 
is thus obvious that, in the second choice (Fig. 6b), 
where (67b) is used to define RP, these constraints are 
apropriate for every MF. To achieve our requirement in 
the former choice, severe complications arise. The effect 
of our constraint should be that the target MF fulfils the 
condition 

~9~(t~ + A) = p~(t~), (72) 



W. PACIOREK, V. BUSSIEN GAILLARD, K. SCHENK AND G. CHAPUIS 357 

where 
A = q .  (r ~' - r~'), (73) 

which is equivalent to a change of RP. In other words, 
we have to 'simulate' such a change by using only 
parameters that are at our disposal. The solution depends 
on what these parameters are. 

If the complex Fourier coefficients are refined, the 
solution is to apply the shift theorem and obtain the 
following set of constraints: 

Ip~l : Ip~l,  
(74) 

¢,~ = ¢~ + hA.  

The same approach is valid for any MF with the phase 
refined. If trigonometric series are used, this simple 
approach is virtually impossible since the constraint 
equations become nonlinear. The drawback of this ap- 

(c) 

Fig. 6. Influence of the choice of the internal coordinate reference 
point on equality constraints applied to the parameters of the 
modulation functions. (a) de Wolff's choice, (b) Kobayashi's choice, 
(c) arbitrary choice. 

proach (apart from forcing the user to select a particular 
form of MF) is that, in most cases, the basic coordinates 
are also refined and some constraint parameters in (74) 
need to be recomputed after each refinement cycle. 

The exact solution is thus to leave the user a choice 
of RP, at least betwen the first and the second case. This 
freedom helps solve the problem above exactly and for 
any MF. In the third case (Fig. 6c), which corresponds 
to RP given by (67c), it is sufficient to assign the same 
value (not necessarily equal to zero) to both subject 
atoms and the reference atom. 

All results presented so far can be applied to commen- 
surate structures. The only difference is that one gets a 
discrete set of values for any modulation function and 
MG quantity rather than a continuous one. The RP is 
always explicitly included in all expressions, including 
structure-factor formulae (Parisi, 1994). 

5. Structure-factor formulae 

A supercrystal is a periodic structure and, as such, 
exhibits a discrete diffraction pattern. The diffraction 
spots coincide with the reciprocal superlattice. By con- 
struction, the diffraction pattern is the projection of 
the former onto the physical three-dimensional space. 
The incommensurability property implies a one-to-one 
correspondence between both sets of points. 

Of great practical importance is that the structure 
factor of an IC structure is equal to that calculated in 
superspace. This identity can be verified by deriving 
this expression in superspace by taking into account 
translational symmetry, and in three-dimensional space, 
where such a symmetry is absent. Similar calculations 
have been done even before the advent of the superspace 
approach in order to explain the presence of satellite 
reflections for some simple models (BShm, 1975). 

However, to fully exploit the superspace-group sym- 
metry, more elaborate expressions have been derived 
and are now commonly used in IC structure anal- 
ysis, mainly for the structure refinement. Unlike in 
unmodulated structures, these expressions are usually at 
least briefly mentioned in most structural studies of IC 
structures. There is more flexibility in this expression 
and in some cases it is difficult to interpret the results 
without knowing explicitly which formula has been used 
in the structure refinement. An alternative is to provide 
some additional indications on the modulation functions. 

The first source of ambiguities lies in the choice of the 
analytical form of the MF since no commonly accepted 
standard exists. We shall also focus on another rarely 
mentioned flexibility: the choice of RP and its conse- 
quences. In particular, it will be shown that, by using 
a slightly different, but permissible, expression, one can 
get a numerically different, but physically equivalent, 
description of the same IC structure. This extra flexibility 
will also be proved useful to achieve some additional 
requirements. 
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5.1. Structure factor of a supercrystal 

The most frequently used expression was derived by 
Yamamoto (1982). It is a straightforward extension of 
de Wolff's original formula that incorporates into one 
concise formula of striking simplicity various types of 
modulation and (3+d)-dimensional superspace-group 
symmetry. Restricting ourselves to one-dimensional 
modulations and neglecting only the temperature factors, 
we obtain the expression 

1 
FH = ~ f~-t f d~/5u(:2~) 

#, s 0 
4 

x exp{27ri E [h~x~(:~) + hi~]}. (75) 
i=1 

This form differs slightly from the original writing since 
some simplifications have been achieved (Paciorek & 
Kucharczyk, 1985). In particular, rotations were applied 
to reflection indices rather than atomic coordinates. Let 
us define 

4 
$ h~ = ~ Rf ih j ,  i = 1, . . . , 4 ,  

j=~ (76) 

H~ = h~ + h~q~, i = 1 , 2 , 3 .  

The last equation results from the condition below, 
which is fulfilled by all superspace-group symmetry 
operations when applied to the irrational part of the 
modulation vector: 

R q  = R 4 4 q ,  (77) 

and is sometimes called the compatibility condition. 
Characteristic of this approach is the consequent use 

of higher-dimensional notation and fractional coordi- 
nates only, even if some quantities are redundant, as 
will be shown later. Special attention should be paid 
to the fourth coordinate. This quantity is considered 
as a continuous variable but atomic indices and other 
'decorations' are retained, probably to achieve a simple 
expression for symmetry conditions. 

All four atomic coordinates are augmented by MF: 

x~/(2~) = ~ + ~2~(2~), i = 1 . . . .  ,4. (78) 

Symmetry-generated atom parameters (both average and 
MF) are computed by using the following set of equa- 
tions: 

4 

j = l  

4 (79) 
= E 

j = l  

= 

In the last equation, a symmetry condition is given 
for a scalar MF. In IC structures, such a function 

possesses non-trivial transformation properties owing to 
the presence of internal coordinates. No analogy to this 
phenomenon exists in normal crystals and this parameter 
is simply the same for all symmetry-equivalent atoms. 

The price for a full higher-dimensional notation is that 
some quantifies are obviously redundant. For example, 
displacements take place in physical space only and the 
additional component is calculated from the equation 

3 
~('2,t~) = ~ qi~t¢(~,~) (80) 

i=1 

at every value of the argument. The same is observed 
for anisotropic temperature factors (not discussed here). 
This is the place where the compatibility condition for 
superspace-group symmetry operations is necessary. 

The actual MF parameters are coefficients of the 
following Fourier series, usually truncated to a very few 
terms: 

~2~(:~) = ~ u,,n -~ exp(27rin2~) + c.c., 
n > 0  

i = 1,2,3, (81) 

/5u(2~) = y]~ /3~ exp(27rin:2~) + c.c. 
~_>0 

Sometimes, the zero-order terms are excluded, especially 
from displacive MFs. 

The use of the labeled symbol for the integration vari- 
able, the 'fourth' atomic coordinate, in (75) is somewhat 
confusing. The justification lies only in the symmetry 
property of that variable: together with the remain- 
ing true atomic coordinates, it transforms according to 
the superspace-group symmetry operation as a higher- 
dimensional vector component. 

In (75), only the symmetrically independent atoms 
are required for the evaluation of the structure factor. 
The contribution of a symmetrically equivalent atom 
does not require an explicit evaluation of its MF. This 
resembles the evaluation of an ordinary structure factor. 
This is possible because several conditions are fulfilled 
simultaneously: 

(a) the structure factor is a sum of contributions from 
individual atoms; 

(b) it is an integral of a periodic function over one 
period; 

(c) the internal coordinate is the integration variable; 
(d) the symmetry transformation of the internal coor- 

dinate is linear. 
It is easy to show that in the simplest case of a purely 

occupational modulation the following identity holds: 

1 
f dxp[R¥~(x - 7-4)] exp(27rih4x) 
o 

1 

= f d x p ( x )  e x p [ 2 7 r i h 4 ( R 4 4 x  -k- 7-4)]. (82)  
0 
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The same is true for the general case of modulations 
and this identity is the main simplification leading to the 
above structure-factor formula. It has a great numerical 
advantage when evaluating such an expression by use 
of any numerical integration method because MFs of 
symmetry-independent atoms can be precomputed at the 
required values of the arguments and subsequently used 
for all reflections. More elaborate methods have also 
been investigated (Paciorek & Chapuis, 1992, 1994). 

In the simpler case of internal coordinate translation 
only, not necessarily related to the symmetry transfor- 
mation, one gets 

1 

f dx p(x - "r) exp(27rih4x) 
0 

1 

= exp(27rih4T) f dx p(x) exp(27rih4x) 
0 

(83) 

and again, if other MFs of a given atom undergo such 
a common transformation, the integral is multiplied by 
the exponential factor above. This relation is of great 
practical importance as an internal coordinate translation 
affects only the geometrical part of the structure factor. 

5.2. The structure factor in vector notation 
Nowadays, IC structures are no longer exotic and 

a detailed exposition of the underlying concepts and 
methods has recently been presented in International 
Tables for Crystallography (Janssen, Janner, Looijenga- 
Vos & de Wolff, 1992). The superspace groups have been 
tabulated for (3+1) dimensions only due to space limi- 
tations and many related concepts of higher-dimensional 
crystallography relevant to this topic have been clarified. 

In particular, the structure-factor expressions have 
been given and the concept of MFs and their symmetries 
have been explained. To our surprise, the expressions are 
in a different form and those used in practice are rarely 
mentioned. The most general expression has been given 
in the form 

FH = E f ~  f d t p " ( t )  
t t Y2i 

× exp{27ri(H, H I ) - ( r "  + u" ( t ) ,  t)} (84) 

and it is valid for a general (3+d)-dimensional IC 
structure. The integration above is over a d-dimensional 
hypercube, the internal space counterpart of the unit cell. 
The modulation of the temperature factors is omitted. 
Surprisingly, no attempt has been made to accommodate 
symmetry operations in the above expression. On the 
contrary, the discussion of the symmetry properties of 
the MF has been separated and the summation is over all 
atoq~s. It suggests that in order to use such an expression 
we are forced first to evaluate the MF parameters for all 
atoms, a kind of 'expand' procedure. This is sometimes 

feasible, but rarely used, if the structure factor is to be 
calculated together with all partial derivatives, even in 
unmodulated structures. 

Since we are mainly concerned with one-dimensional 
modulations, let us first rewrite the above expression for 
that case. One gets 

1 

FR = E f ~  f dt p ' ( t )  
tt 0 

× exp[2~-i(H, H,r). (rU + uU(t), t)] (85) 

and can extract the factor independent of the integration 
variable: 

FH = ~ f ~  exp(27riH, r u) 
/z 

1 

× f dtp"(t) exp[27ri(H, uU(t) + h4t)]. (86) 
0 

This form is more and more frequently used and the 
integral, possibly multiplied by an atomic scattering 
factor, is sometimes called an atomic modulation factor 
and is given a new symbol (Prrez-Mato, Madariaga, 
Zfifiiga & Garcia Arribas, 1987). The expression (86) 
is getting even closer to that for unmodulated structures. 

The conditions for real-valued MFs take the form 

urn(t) = ~ u ~  exp(ZTrint), u~n = u~*, 
n (87) 

pt~(t) = ~-]~p~ exp(27rint), p~-n = p~*, 
n 

where the complex vector notation is used for a dis- 
placive modulation. 

The simplest expression one can get for a purely 
occupational modulation is 

1 

FH = ~ f~exp(ZTriH, ru) f dtpU(t) exp(ZTrih4t) 
/z 0 

(88) 
and, furthermore, an analytical solution can be found to 
the integral 

FH = ~ f~I exp(ZTriH, r")p~_h4. (89) 
t~ 

It is interesting to compare this expression with (75). At 
first, let us neglect the symmetry and recover the vector 
notation partially, 

1 

FH = Y'~f~ exp(27riK, r t~) j ' d ~ / 5 " ( ~ )  
/z 0 

× exp(27rih4:2~), (90) 

and then recast it into the final form: 

FH = ~ f ~  exp(27riK • rU)~t±h 4 . (91) 
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The result is apparently different since the dot product in 
the geometrical complex factor now involves the main 
reflection indices only. 

Using both expressions in the structure refinement, 
one can get different parameters of the MF from the 
experimental data of the same structure. But comparing 
the results more carefully, one can easily find that 
parameters of the MF, in our case, the complex Fourier 
coefficients, are related by the equation 

/5~ exp(27rinq, r °) = p~ (92) 

and this is equivalent to the translation of the scalar 
function along its independent variable. Such a trans- 
lation has been achieved by a small change in the 
geometrical part of the structure factor, without any 
explicit modification of the MF expression. 

5.3. The structure factor with internal coordinate 
reference points 

The two forms of the structure-factor expression differ 
in the use of two different integration variables, which 
are related by the equation 

4 

K .  r t' + h4(q" r t' + t) = ~ hi2~. (93) 
i = 1  

It is easy to show that, by integrating the rather long 
expression 

1 

FH = E f ~  exp(27riZ • r")  f dt/3U(q • r ~' + t) 
/z 0 

x exp{27rih4(q, r"  + t)}, (94) 

one obtains exactly the same result using either of 
them. To recover Yamamoto's formula, it is sufficient 
to perform a trivial change of the integration variable. 
The explicit relation between MFs can be written as 

/5"(q. r g + t) = ~ /3~  exp[27rin(q, r ~' + t)] 
n 

= 2 P~ exp(27rint) 
n 

= p(t). (95) 

It is obvious that, in the numerical calculations, the use 
of the right-hand side of (95) has some advantages. 
As this is just a standard Fourier expansion, the basis 
functions (simple exponentials) are the same for all 
atoms and all MFs. It is desirable to retain this form 
whenever possible. 

Let us leave the argument of the MF unchanged and 
modify only the geometrical part of the structure factor 
in front of the integral: 

1 

FH = ~ fhexp(27r iH,  r u) f dtiSU(q • r ~ + t) 
tt 0 

x exp(27rih4t). (96) 

This form indicates directly the RP of the MF and re- 
sembles an expression used in deriving structure factors 
directly in three-dimensional space. The integral was a 
by-product of the summation over all unit cells of the 
basic structure. 

This form is a suitable starting point for introducing 
an arbitrary RP. The best method is to replace the atomic 
coordinates in the MF argument above by an arbitrary 
vector. This is equivalent to a new choice of MF. First, 
one can write a new expression: 

1 

FH = E f~exp(27r iH,  r" )  f dt/3U(q, g~' + t) 
/~ 0 

x exp(27rih4t), (97) 

and then change the integration variable: 

FH = ~--~ f ~  e x p { 2 7 r i ( H ,  r" - h4q.  gg)} 
/z 

1 

x f dx~g(x)exp(27rih4x). 
0 

(98) 

Assuming that the new MF has the Fourier expansion 

~"(x)  = ~ ~  exp(27rinx), (99)  
n 

we arrive at the more general final result: 

FH = E fi~ exp{27ri(H, r ~ - h4q" g t Z ) } j 0 ~ - h  4 • 

(100) 

To solve easily the equality constraint problem discussed 
in §4.5 by using this expression, it is more convenient 
to rewrite it in the equivalent form 

FH = Y~ f~exp{27ri[K,  r"  + h4q" (r t~ - g")]}/3~h4 
tt 

(101) 

and compare it with the requirement on the phases of 
MFs discussed before. The additional exponential phase 
factor contains precisely the required phase difference 
when the newly introduced vector is replaced by the 
atomic position vector of the required reference atom. 
The solution to this problem is exact, independent of 
the form of the analytic form of the MF and requires a 
trivial set of equality constraints. 

Finally, a relationship between the two MFs can be 
established by comparing their Fourier coefficients: 

/3~ exp(27rinq • gt~) = p~. (102) 

This is the most general relationship and it is easy to 
see that the two other forms discussed above are special 
cases, in some sense extreme ones. The choice of RP by 
using atomic coordinates or the null vector leads to the 
original formulae of de Wolff and Kobayashi's result, 
respectively. The most general form has been used by 
Peff/~ek in his expression to accommodate a modulation 
of a rigid molecule. 



W. PACIOREK, V. BUSSIEN GAILLARD, K. SCHENK AND G. CHAPUIS 361 

5.4. Contribution from attached atoms 

In IC structures, the procedures discussed above give 
us directly the coordinates of the attached atoms on 
a given physical section of superspace. It is virtually 
impossible to split such a coordinate into MFs and 
average coordinates. They can eventually be calculated 
numerically from the expression 

1 
(r t') = f dt r+'(t) (103) 

0 

in order to compare an attached-atom modulation with 
others by evaluating the following differences: 

ut '( t)  = r t ' ( t ) -  (r+'), (104) 

in order to make, for example, some plots. These func- 
tions as well as attached-atom coordinates are given 
by an algorithm rather than an analytical expression. 
Furthermore, the number of relevant harmonics included 
in these functions is unpredictable and can be much 
higher than in the defining atoms (usually rather limited). 
In this case, the problem of RP also arises. 

Let us write the structure-factor expression of a purely 
displacive modulated structure in the form 

1 

FH = ~ f h  f dtexp[27ri(H, rU(t) + h4t)], (105) 
/z 0 

where the distinction between average coordinates and 
MFs has been abandoned. This expression is essentially 
equivalent to the case when zero-order harmonics'have 
been included in the MF and basic atomic coordinates 
are zero. The choice of RP has a natural solution, as 
both extreme cases discussed before lead to the same 
result, namely zero. For the defining atoms, we have of 
course room for choice. In Fig. 7, part of an IC structure 
with attached H atoms is shown. Both arrangements have 
been used to compute the desired atomic coordinates. 

In some cases, the structure factor can be evaluated 
analytically. Unfortunately, this is not possible when 

0 (~) Hydrogen of CH 3 

(~) Hydrogenof CH 2 

( ~  Carbon of.CH 3 

O Carbon ofCH 3 

Fig. 7. Part of an IC structure with attached H atoms. Only C atoms 
have refined displacive MFs. For every t, all H atoms are located 
in a predefined arrangement without adding any further MFs and 
restraints. 

attached atoms are included. The complete structure- 
refinement program also has to provide an algorithm to 
evaluate such an expression by numerical integration. 
The coordinates of the attached atoms have to be calcu- 
lated for every value of the internal coordinate required 
by the chosen numerical integration method. It requires 
some additional memory space but is generally quite 
efficient. 

5.5. Recovering superspace-group symmetry 

In our above considerations, the superspace-group 
symmetry was not fully utilized. To achieve the for- 
mer simplicity and efficiency, we have to include the 
symmetry in all expressions in the most economic and 
efficient way. Fortunately, only minor changes to the 
structure-factor formula are required to take into account 
the contribution from attached atoms and the definition 
of the phase reference point. 

Let us begin with the expression for a scalar MF of 
the atom transformed by a symmetry operation when the 
target value of the physical section in the superspace is 
to be specified. Such an expression reads 

p~'(q • g" +t)=pt ' [R~41(q .g" -~-4+t )]  (106) 

and it is easy to see that this operation requires also the 
evaluation of the target value of RP. Even if the MF 
is scalar, we have to exploit fully the superspace-group 
transformation defined as 

g~' = R g  t~ + s, 
(107) 

t I = R44t h- 7 - 4  - -  q" S, 

where, in the case of (3+ 1)-dimensional IC structures, 

R44 = R~-~ = + l ,  (108) 

which allows some further simplifications. 
The compatibility relation reads 

R44q" R g  u = q" gt~ (109) 

and, after some straightforward algebra, we arrive at the 
equivalent expression: 

pU(q.g~+t) = p ~ [ q . g U + R ~ ( q . s - T 4 + t ) ] ,  (110) 

which has a great computational advantage since a 
transformation of the RP is not required. All quantities 
on the right-hand side are limited to the symmetrically 
independent atom only. 

In our approach to present results, the above expres- 
sion is extensively used to plot all MFs or even an 
entire modulated structure on the physical sections of 
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the superspace. All plots are of the form 

f " ( t )  = p t , (q ,  gt, + t), t e [0, 1], (111) 

which makes the RP choice transparent. 
Our next concern is to include the symmetry op- 

erations in the structure-factor formulae in the most 
efficient way. Only essential steps of the derivation will 
be presented here and it is recommended that the very 
intuitive approach given by de Wolff (1974) should be 
studied. 

To accommodate an atom with explicitly refined dis- 
placive MFs and a given RP, our departure point is 
the expression for its coordinates transformed by a 
superspace-group operation when the target t section is 
prescribed: 

r~(t)  = r ~ + u ~ ( q .  g ~ + t) = R r "  + s  + RuU(x) ,  

(112) 

where the new internal coordinate is 

x = q .  gU + R~-41 (q .  s - 7.4 q- t ) .  (113) 

Then, the inverse transformation reads 

t = R44x - R44q.  gU - q"  s + 7.4- (1 14) 

The point on the string representing the new atom in 
superspace has been defined. Its contribution to the 
structure factor can be written as 

1 

F~ = f ~  f dtexp[27riH,  rV(t) + h4t], (115) 
0 

and then transformed to the form below, which is better 
suited to numerical evaluation: 

FI-] = f ~ e x p [ 2 7 r i ( H  ~" r t~ - h~q .  g~)] 
1 

× f dx exp[ZTri(H ~. u ' ( x )  + h~x)]. (116) 
0 

In the expression above, all parameters are now re- 
lated to the symmetrically independent atom only. Other 
quantities are defined as 

H ~ = I ~ H ,  
(117) 

h~] = R44h4 

and 
4 / N 

i=1  

(118) 

where the tilde means matrix transposition. The last 
equation is the factor related to the non-primitive trans- 
lations of the superspace-group operation, which always 
adopts this particular form. 

To include attached atoms and their symmetrically 
equivalent ones another, but equivalent, form of the 
superspace-symmetry transformation can be used. Our 
departure point is now a discrete set of coordinates (not 
modulation functions) calculated at values of the inte- 
gration variable required for the numerical integration: 

rV(xk) = R r ' ( t k )  + s, k = 1 , . . . M ,  (119) 

where the transformed internal coordinates are 

xk = R44tk + 7-4 - q"  s. (120) 

The transformed points appear on other sections in 
superspace but in this calculation it is irrelevant since 
the required value is the integral of periodic functions 
taken over the whole period. The contribution to the 
structure factor of the new atom is 

M 
F~ ~_ f ~  ~ wk exp[27ri(H, r~(xk) + h4xk)], (121) 

k = l  

which can, without difficulties, be transformed to the 
final form: 

M 
F~ ~_ f ~ Y 2 ~  E wk exp[27ri(H s" rt~(tk) + h~tk)]. 

k = l  
(122) 

In both above expressions, weights are chosen according 
to the integration method and no attempt has been made 
to simplify further the result as the coordinates are 
computed by algorithms, not by analytical expressions. 

Even if simpler equations were available, in which 
all quantities related to the internal coordinates would 
disappear, there is one place in all the expressions above 
where the superspace-group symmetry manifests itself. 
This is the simple exponential factor (118) due to the 
non-primitive translations, visibly higher-dimensional 
ones. Our system possesses a higher-dimensional 
space-group symmetry with all the crystallographic 
consequences. 

5.6. Toward future improvements 

As mentioned before, the preceding results have been 
applied to the IC structure of hexamethylenetetramine 
suberate. The final result can be summarized as follows: 

Chemical formula: C6H12N4.(CH2)6(COOH)2. 
Superspace group: P21(aft'/). 
Reflections: 4969. 
Parameters/harmonics: 1364/8, 431/4.  
Geometrical restraints: 99. 
H atoms attached to C and N atoms: 24. 
Divisions in numerical integration: 64. 
CPU time/cycle: 15 min on SG Indigo-2. 
Discrepancy indices: R = 0.079, wR = 0.07, GOF = 

3.77. 
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A short synopsis of our first unsuccessful attempts to 
refine this structure will be given. 

(i) The H atoms constitute about 16% of the electron 
density and their ommision leads to serious deficiencies 
of the model. This is also observed in the basic structure 
refinement using conventional techniques. 

(ii) Most of the refined parameters are related to 
displacive MFs. Our attempts to find an occupational 
modulation model failed. 

(iii) Adding all H atoms almost triples the number 
of refined parameters. Even by adding all necessary 
geometrical restraints (pseudo-observations), it was not 
possible to obtain a reasonable observations/parameters 
ratio. The refinement became very unstable and time 
consuming. 

We reconsidered the whole procedure and developed 
a new approach to handle at least H atoms. The crucial 
observation was that the atomic model has a serious 
limitation if the nature of the modulation is orientational 
rather than displacive. 

Let us consider a simple two-dimensional rotation: 

(__c 8 : ) ( y )  = ( y : ) ,  (123) 

where 

c ---- cos ¢, s = sin ¢. (124) 

Assume that the rotation angle is a proper MF and 
restrict ourselves to the harmonic case: 

¢ = o~ sin(t). (125) 

The objective is to convert this orientational modulation 
to the atomic model, i.e. to find the MF for every 
coordinate. The result is 

x ' ( t )  = Jo (a )x  + A x  + By ,  (126) 

y'( t )  = Jo(a)y  + A y  - B x ,  (127) 

into account the rotation of the thermal ellipsoids. The 
number of parameters is also growing rapidly. 

We conclude that significant improvements are neces- 
sary to deal with similar IC structures. The exact solution 
of the rotational modulation is our current concern. We 
are considering the application of quaternions to handle 
these problems. 

6. Conc lus ions  

The main motivation for this study was to extend the IC 
structure refinement procedure to accommodate a class 
of crystals containing a large number of atoms in the 
unit cells. The atomic model with MFs refined for each 
atom can be very difficult or even impossible to compute. 
It is necessary to find means to reduce the number 
of refined parameters without sacrificing the precision 
of the final model. An analog of the so-called 'riding 
refinement' has been proposed, in which a number of 
atoms has to faithfully follow groups of others, while 
maintaining some given geometrical constraints. Such a 
procedure has been extended here to (3+ 1)-dimensional 
IC structures. 

In the course of these studies, we encountered also 
a number of related problems concerning the effective 
and unambiguous use and interpretation of constraints 
and restraints. Our results are included above along with 
a short review of the relevant concepts and formulae 
of higher-dimensional crystallography. Some proposals 
regarding a more precise presentation of the results are 
included. 

We hope that our considerations will be helpful in 
ongoing projects to build a structural database of solved 
IC structures, especially to build a suitable dictionary of 
all relevant items making further studies of IC structures 
possible, unambiguous and easier. 

Financial support from the Swiss National Science 
Foundation is gratefully acknowledged. 

where known Fourier-series expansions are 

o() 

A = 2 ~ J2n(a)cos(2nt) ,  (128) 
n = l  

o o  

B = 2 ~ J2n-l(o~) s in [ (Zn-  1)t]. (129) 
n = l  

Thus, even the simplest harmonic modulation of the 
rotation angle leads to the infinite Fourier-series expan- 
sion for each displacive MF. The same holds in the 
three-dimensional case (modulation of Euler angles). 

Our current software is limited to atomic MFs ex- 
pressed as Fourier series and thus requires the use of 
rather long expansions to reproduce rotations with large 
amplitudes. This approach is not exact and does not take 
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